2.3.3 Quantum Dg | Dg-branes via Fadell-Husseini’s theorem

Cohomotopy Moduli of Hanany-Witten brane configurations.

Consider the situation
(119) for M-theory on S?
with Dg L Dg-intersections
on NSs-cores: hence for
n=4,d=9, p=_6.
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[SS22-Cnf, Rem. 2.14]

Quantum observables on Hanany-Witten configurations.
It follows with the discussion in §2.2 that the light-cone quantum L |-
observables on these brane configurations form, for each number N
of Dg-branes, the homology Pontrjagin-algebra of the based loop
space of the ordered configuration space (119). Remarkably, by
the Fadell-Husseini theorem [FHO1, Thm. 2.2] this is isomorphic
to the algebra of horizontal chord diagrams on N-strands modulo
the “2T- and 4T-relations” [SS22-Cnf, Prop. 2.18]:
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and 4T relations

In their classical limit (graded-symmetric Generally, chord diagrams serve as observables on the geometry
chord algebra) these relations match the of fuzzy 2-spheres [SS22-Cnf, §4.2] as expected for fuzzy funnels
brane intersection rules expected in connected Dg to Dg-branes. Fuzzy 2-spheres are indeed quantum

Hanany-Witten theory [SS22-Cnf, §4.10]:
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states of these brane configurations,
in that they constitute positive linear
functionals on these quantum observ-
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Typical value
of a quantum state
on chord diagrams
(a “weight system”)
in Penrose notation.

N coincident
- -Dp-branes

= Tr(pa.pb.pc.pb.pd.pc.pa.pe.pd)
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